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ABSTRACT 

Modern agricultural systems are experiencing a revolution in how information 
is disseminated and exchanged among networks of outreach professionals, 
farmers, consumers, and community stakeholders. The traditional approach to 
agricultural extension relied on a top-down, continuum model that went from university 
researchers to cooperative extension and finally to growers. With internet penetration 

rates rising in rural communities, stakeholders are increasingly experimenting with 
social media and agricultural information has been widely shared across local, 
national, and global networks. This paper addresses such networks by deploying a 
supervised snowball census of the agricultural social web to investigate the 
formation of communities dedicated to sharing agricultural information. We identified 
a cohort of 153 individuals responsible for the outreach initiatives at the University of 
California and mapped the first and second level network of followers connected to 
this community, thus rendering a population of 59K users that tweeted 250M tweets 
since signing up to Twitter. We processed the content of each tweet posted in 
2014 using multiple classifiers and determined that the boundaries of the network 
comprise 32K nodes and 4M edges. The resulting graph shows that this community is 
clustered in areas of agricultural expertise with limited overlap across cliques. We also 
found increasing patterns of core-periphery dynamics associated with the level of 
expertise attached to each topical subnet. The paper concludes by discussing 
related literature and the policy implications of our research. 

1. Introduction

Modern agricultural systems are experiencing a revolution in how knowledge is 
disseminated and exchanged among networks of outreach professionals, farmers, 
consumers, and community stakeholders. The traditional approach to agricultural 
extension relied on a top-down, continuum model that went from university researchers 
to cooperative extension and finally to farmers. With internet penetration rates growing 
in rural communities, stakeholders are increasingly experimenting with social media 
and 

Suggested Citation (APA): Bastos, M.,& Lubell, M. (2015, October 21-24). Networking Aggie: Broadcasting 
Information To Topical Communities. Paper presented at Internet Research 16: The 16th Annual Meeting of the 
Association of Internet Researchers. Phoenix, AZ, USA: AoIR. Retrieved from http://spir.aoir.org.



other online forms of communication to share agricultural information across local, 
national, and global networks. Yet, systematic scholarship investigating the dynamics of 
online networks to the agriculture and food sectors, and the potential effects of social 
media at spreading expert knowledge, have remained largely unexplored. 
 
Social media affordances have been remarkably efficient in connecting nationwide and 
global chains of information diffusion to otherwise local activities (Waldman, 2011). This 
transition was particularly salient in topics and problems relying on a small number of 
specialists who engage a large number of highly diverse and continuously expanding 
body of potential stakeholders. Recent studies have shown that one way to disseminate 
knowledge efficiently across broader communities is through specialized knowledge 
networks (Bidwell et al., 2013, Kalafatis et al., 2015). These networks are primarily 
knowledge extension and include organizations, actors, and communication 
infrastructure through which information is disseminated, often transforming or supporting 
decision-making policies that impact local and national communities. 
 
Within our field of inquire, knowledge networks allow for specialized information to travel 
within and among communities of interest (Henri and Pudelko, 2003)—that is, from 
Twitter accounts managed by government agencies to Twitter accounts of outreach 
individuals and finally to the locally grounded community of users. Agricultural extension 
builds up on such communities and capitalizes on the network structure of local 
agricultural knowledge systems comprising distributed actors with a diversity of 
specializations and expertise (Lubell et al., 2014). To this end, this paper contributes to 
the literature on specialized knowledge networks by exploring how a network of Twitter 
users invested in the dissemination of agricultural information provide higher exposure to 
specialized knowledge. 
 
In the following we report on an investigation of a community of users dedicated to the 
dissemination of agriculture information in California and beyond. The seed users 
comprise 153 Twitter accounts associated with the Agriculture and Natural Resources of 
the University of California. We identified the followers and followees connected to the 
seed users and retrieved the timelines of each Twitter account, thus rendering a 
population of 59K users and 68M tweets. We designed two classifiers to process the 
content of each tweet posted in 2014 and determined the boundaries of the network. As 
Twitter interactions consist of @-mentions, a publicly-visible message targeting other 
accounts, and retweets, the action of rebroadcasting a message to the users’ followers, 
we mined the timelines and profiles of each of the individuals in the population to identify 
instances of information sharing. In what follows, we seek to advance foregoing research 
by studying the communication patterns within this community. 
 
2. Previous Work 
 
Previous studies have investigated the use of social media in establishing a green virtual 
sphere by supporting access to environmental information and providing a space for 
debate. This literature connects the long-standing debate on the emergence of a public 
sphere in modern society (Calhoun, 1992, Habermas, 1991) with the potential changes 
associated with the use of social media platforms to engage the public in open 
discussions (Papacharissi, 2002, Bastos, 2011). Subsequent studies have explored the 



elapsed effects of social media on the green public sphere (Torgerson, 2006, Torgerson, 
1999, Yang and Calhoun, 2007), particularly the user of online social networks to air 
grievances, develop coordinated actions for natural or man-made disasters, and mediate 
partisan battles over environmental regulation, energy policy, and climate change. 
 
The notion of a green public sphere was originally advanced by Torgerson (1999) and 
refers to a subsection of the public sphere focused on environmental issues. Following 
the early definition proposed by Habermas (1991), the green public sphere would form a 
space for discussion detached from individual or private interest and displaying an interest 
in plurality of opinions however inconvenient and troubling they can be. Yet, according to 
Torgerson (1999), the green public sphere is not without its boundaries, as meaningful 
disagreements require clear and agreed limits to move forward the discussion. According 
to Yang and Calhoun (2007), the emergence of a green public sphere resulted from users 
resorting to legacy and social media to voice their grievances about environmental issues 
which otherwise would not have been heard. 
 
Within this field of inquire, Segerberg and Bennett (2011) analyzed the content of tweets 

associated with protests against the 2009 United Nations Climate Summit in Copenhagen 
and White et al. (2014) explored the motivations behind social media use during the 
Alberta oil sands. This body of scholarship reported that Twitter was used to access news, 
particularly alternative sources covering the unfolding events. White et al. (2014) reported 
that even though users resorted to Twitter to engage in debates over the Northern 
Gateway pipeline, interviewees underplayed the importance of Twitter in the formation of 
a green virtual sphere, as access to the space was not equal and the discussions most 
likely monitored. Similarly, Bortree and Seltzer (2009) examined communication 
strategies employed by environmental advocacy groups on Facebook and Cheong and 
Lee (2010) investigated how the use of Twitter in Australia was connected to the Earth 
Hour 2009 campaign. 
 
We draw from this scholarship on social media and the green public sphere and 
hypothesize that the ensuing networks used to convey agriculture information follows a 
multi-step model of information diffusion centered on core users and surrounded by highly 
active brokers exporting local knowledge to other agricultural systems and the broader 
public. This framework has been applied in Twitter literature to describe a process of 
information diffusion that often deviates from patterns observed in social networks (Wu et 
al., 2011), as information exchange relies on hubs and authorities (Dubois and Gaffney, 
2014) and the network topology behaves much like an information network with 
pronounced amplification effect for information dissemination (Myers et al., 2014). 
Broadly speaking this framework foregrounds the diffusion of information from elite 
towards ordinary users and is consistent with the two-step flow theory of communication 
originally proposed by Katz (1957). 
 
3. Rationale 
 
Due to technical requirements and stringent rules to retrieve Twitter data, scholarship on 
Twitter has often focused on a set of hashtagged tweets as a marker to unfolding events 
around the world. With the exception of a few macroscopic studies of Twitter network 
(Kwak et al., 2010, Gabielkov et al., 2014, Myers et al., 2014), the high computational and 



financial costs involved in retrieving a complete set of tweets compelled researchers to 
focus on subsets of data revolving around events and/or contextual markers. As a result, 
Twitter scholarship has dealt with a particularly set of data mostly characterized by the 
phatic function of social media communication (Miller, 2015). This de facto standard 
approach to Twitter research is centered on messages motivated by ongoing events and 
often crafted with the potential for viral cascades. 
 
While datasets retrieved using markers such as keywords and hashtags are useful to 
track the diffusion of information about a given topic, calls for awareness about political 
issues, and the coordination of social movements (Bastos and Mercea, 2015), this 
procedure of data collection emphasizes phatic messages against the dialogic exchanges 
between social media users. In fact, Twitter users often begin interacting within a 
hashtagged stream only to subsequently drop the hashtag as their one-to-one interaction 
unfolds. As a result, researchers mining Twitter Streaming API1 are often left with data 
lacking interactions initiated with the hashtag but dropped afterwards. Another significant 
shortcoming of this approach is that data can only be retrieved prospectively, as access 
to historical Twitter data is prohibitively expensively. 
 
As a result, social media research has involuntarily emphasized and scrutinized a set of 
messages purposely tailored to be phatic and designed for maximum effect, all the while 
ignoring the larger conversation in the background that is potentially connected to the 
hashtag stream. Moreover, the representation of a public sphere by means of an ad-hoc 
public deserves careful consideration as the raison-d'etre of hashtagged messages is to 
perform a one-to-many broadcast. By losing track of myriad interactions between Twitter 
users, and frequently relying on hashtags, social media scholarship has inspected a 
reduced version of Twitter’s agora (Miller, 2015) that departs considerably from the 
engaged, content-driven, dialogic public sphere envisioned by Habermas (1987); a public 
sphere marked by the lively exchange carried out on a daily basis. 
 
Data collection based on hashtags or other textual markers are thus inadequate for 
tracking the dynamics of communities over extended periods of time. The research design 
described in the following sections addresses these shortcomings by moving the focus 
from the streaming of evens to long and sustained interactions within a community of 
users. While historical Twitter is difficult and often expensive to retrieve, Twitter Rest API 
can be used to retrieve the timeline of individual users with no temporal restriction or 
extemporaneous costs beyond the computational resources required to cover a given 
population of users. By focusing on the organic interactions between users that evolved 
over several months or years, this research design can shed light on community 
formation, users’ interaction on social media, and the structure and dynamics of 
communities of interest. 
 
4. Objectives 
 
The aims of this study are threefold. Firstly, we present a census-based, viable, cost-
effective, and replicable research design to track the information exchange within a 
community of Twitter users. Secondly, we report on the affordances of social media to 
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outreach initiatives focused on the dissemination of agriculture-related information. 
Thirdly, we investigate whether the network connecting outreach centers, farmers, and 
government agencies follows a multi-step flow of communication that structurally displays 
core-periphery dynamics. We hypothesized that the network follows a two-step flow of 
communication with a core social network centered on a particular set of nodes 
surrounded by highly active brokers exporting local knowledge to other agricultural 
systems and the broader public. Specifically, we anticipated that the network might 
enforce different paths to disseminate agriculture and general information to the periphery 
of the graph. To this end, and considering the rationale for developing a “snowballing 
census” approach to internet communities reviewed hitherto, we pursue the following 
research objectives: 
 

RO1. Describe a replicable research design based on seed nodes and successive 
network levels by snowballing the follower-followee network; 

RO2. Report on the diffusion of agriculture information across network cliques and 
subcommunities; 

RO3. Identify whether the network follows a multi-step flow of communication 
structured with strong core-periphery dynamics. 

 

5. Research Design 
 
Due to restrictions imposed by Twitter’s REST API, data collection began with a relatively 
small subset of users listed in the UC Ag and UC ANR Twitter lists, from which we 
snowballed data collection to users they follow or are followed. All data collection occurred 
between May 5 and June 27, 2015 via the Twitter REST API, thus providing an estimate 
for the time required for this research approach. The ensuing dataset includes the 
complete set of messages posted by this population since signing up to Twitter, up to a 
limit of 3200. Therefore, the population studied in this paper includes the core 153 seed 
nodes extracted from the UC Twitter lists and their followers and followees, totaling 
59,761 users. Figure 1 shows the resulting two levels of this network, from the 153 seed 
nodes (colored back) to the 59K users interconnected as follower and followees (colored 
blue). 
 
There are differences between @-mentions and retweets that need to be accounted for 
separately. Although @-mentions are arguably more social, they are also used for 
drawing attention of celebrities, politicians, and media pundits and are often an instrument 
for sockpuppeting (Bastos et al., 2013). As we are interested in the diffusion of topical 
information within agriculture communities, we relied on @-mentions and retweets as 
relevant edges connecting Twitter accounts. In both cases we draw an edge connecting 
two accounts that have posted at least one message with agriculture-relevant content at 
some point in the year of 2014. Although the network object includes both @-mentions 
and retweets, the analyses reported in the next section were performed on @-mentions 
and retweets separately. Figure 2 details the process of data collection, processing, and 
analysis and informs RO1. 
 



 
Figure 1: Initial group of 153 seed users in black and extended network in blue (2nd level network) 

The complete set of messages tweeted by these users since joining Twitter totals 285M 
tweets (285,628,862). From the 59,761 accounts in the population we managed to 
retrieve the timelines of 54,422 accounts (91% of users in the target population). From 
the total of 5352 users left out of the network, we found that 501 accounts have yet to 
tweet a single message and 4894 accounts were protected or have been deactivated 
since data collection started. Finally, a total of 43 accounts were both protected and had 
not tweeted any message at the time of data collection. 
 
In addition to these silent accounts, Twitter Rest API limits access to a maximum of 3200 
statuses (tweets) per user. Our population of 59,761 users includes 13,112 accounts that 
tweeted over this limit. This technical limitation imposes considerable challenges to 
retrieving the complete set of tweets of a population over extended periods of time. As a 
result, we managed to retrieve only 65M (65,294,710) tweets from 54,422 users, as 
opposed to a potential total of 285M. Moreover, the temporal series retrieve for this 
population is likely to vary considerably as only a portion of the timelines retrieved was 
objected to Twitter restriction of 3200 tweets per user. 
 
We addressed this problem by identifying the average cut-off date for users that posted 
over 3199 tweets and removed messages posted prior to this date. As a result, we only 
analyzed messages tweeted by the target population after this point in time. We resorted 
to this procedure to filter the 65M tweets collected from Twitter API and ended up with a 
total of 43M messages. As our research is focused on information exchange, we 
subsequently removed messages that were not retweets nor included @-mentions to 
other users in the target population. The procedure further reduced the dataset to 26M 
messages posted between August 1, 2013 and May 15, 2015, thus covering a period of 
roughly 2 years (652 days) with conspicuous dips corresponding to summer vacations 
and regular oscillations associated with monthly cycles of activity. 



1. SNOWBALL: identifying aggie population

2. DATA MINING: retrieving tweets from 2006 to 2015

3. PROCESSING: identify aggie relevant tweets and users

4. NETWORK ANALYSIS: explore and model aggie network
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Figure 2: Data mining workflow and resulting network graph 



 
Figure 3a shows a histogram of messages binned by month, with a cut-off date around 
mid-2003 that includes the complete set of messages tweeted both by filtered users 
(>3200 tweets) and unfiltered users (<3200 tweets). Although this period of 652 days 
includes a comprehensive set of tweets posted by this community, we found 
inconsistencies in the temporal distribution of tweets. Kernel estimation shows that the 
data drops off artificially at the upper end of the time series. This is likely a result of user’s 
timelines being collected sequentially and thus at different points in time. In addition to 
that, we anticipated that older messages would fare relatively better in terms of retweets 
compared to newer messages, as they would have benefitted from a larger period of time 
to spread throughout the network. 
 

 
Figure 3: Complete set of messages retrieved binned by month (a) and sampled data binned by week (b) 

We addressed these issues by selecting an intermediate period of time that was 
unaffected by any variation resulting from data collection. This period of time 
comprehends the entire year of 2014 and includes a total of 3.7M (3,691,342) tweets. 
Therefore, our resulting dataset includes messages posted in 2014 and the analysis 
reported in this paper refers to this subset of retrieved tweets. The frequency of tweets 
binned by week is shown in Figure 3b, with similar frequency distributions across filtered 
and unfiltered users. We expect these procedures to have addressed the restrictions 
imposed by Twitter REST API and to have provided a comprehensive set of messages 
posted by our population in 2014. 
 
In summary, our research design draws from Liang and Fu (2015) by identifying a 
representative set of Twitter users (egos), collecting all the egos’ alters (i.e., followers 
and followees), and the following relationships among the alters. Finally, we obtained 
the profiles and the timelines of the selected users (egos and alters) and processed the 
data to generated a graph with various edge and node properties. We expect this 
approach based on sampling of users, rather than sampling of tweets, to provide a more 
reliable and appropriate approach to analyzing individual and community-level 
behaviors. 
 
6. Data Analysis 
 



For the purposes of this investigation we trained two classifiers to identify messages 
dedicated to agriculture and messages associated with sustainability issues. Tweets often 
include URL links pointing to the actual content under discussion and without which is not 
possible to determine the topic addressed by each tweet. To account for this 
supplementary body of text, we retrieved the webpage title of each URL in the dataset 
and ran the classifiers over the combined corpus of tweet and webpage title (when 
available). The agriculture classifier is based on a set of 37 items, while the sustainability 
classifier relies on a set of 30 keywords, bigrams, and tokens. 
 
Each classifier returns a score based on the concentration of such terms, bigrams, 
keywords, and tokens relative to the number of words in the tweet or the number of words 
in the tweet plus the webpage title (when URL link was available). We ran the classifiers 
on set of 9,627,146 tweets and found that only 12.09% (1,164,014 tweets) of the dataset 
scored above zero for agriculture content and only 5.48% (527,167 tweets) for 
sustainability content. The average score was .009 and .005 for agriculture and 
sustainability messages, respectively. 
 
We relied on the scores calculated by the classifiers (aggieScore and sustainScore, 
henceforth) to process the text and identify relevant messages. Users that failed to post 
any agriculture or sustainability related message during the entire period were further 
removed from the data. In other words, the final dataset is restricted to tweets posted in 
2014 and it does not include users that did not tweet any agricultural-relevant message. 
Yet, the data does include non-agricultural content posted by users who tweeted relevant 
content at some point. 
 

 
Figure 4: Gall-Peters projection of @-mentions and retweets in the sampled network 

We subsequently retrieved geographic information from our population and identified the 
location of 73% of users (39,858 from a total of 54,422 profiles). Twenty percent of users 
with geographic information were based in California (12,058 users), which is 



unsurprising given the location of the seed nodes. Next we processed the text corpora 
and identified senders and receivers of retweet messages in the form of 'rt @' and 'via @' 
(including retweets resulting from Twitter's retweet button) that appeared in the text 
corpora. We subsequently extracted the arcs between users that mentioned other users, 
creating a link between the author of the tweet and every other account mentioned in a 
message that was not a retweet (thus allowing for multiple arcs within the same tweet). 
As a result, the number of @-mentions is slight higher than the number of retweets. Figure 
4 shows the geographic location (Gall-Peters projection) of sender and recipient of 
@mentions (in red) and retweets (in blue) with hotspots of activity in North America and 
a clear cross-Atlantic highways of retweet activity (the directionality of the message is 
bent clockwise). 
 
We removed self-loops and messages directed to or originated from users outside the 
target population of 59,761, which defines the boundaries of our community. As a result 
of the multiple sampling procedures, we ended up with a network of 32,152 nodes (users) 
and 4,418,390 edges (2,502,107 @-mentions and 1,916,283 retweets) posted between 
the first and the last day of 2014. As our research design is focused on information 
diffusion, we consider AB when B retweets A and AB when A mentions B (thus 
following the directionality of the information flow). Given the different rationales involved 
in retweeting and mentioning, we labelled the network edges to separate retweets from 
mentions. Figure 5 depicts the directionality of network edges considered in this study. 
 

 
Figure 5: Direction of edges considered in this study, with the author of a retweeted message as the sender 

The last step of data processing consisted of calculating the geographic distance travelled 
by each retweet and @-mention message. We retrieved the location and geographical 
coordinates of users in our population and deployed a function to calculate the Euclidean 
distance travelled by each arc connecting two users. The calculation relies on an estimate 
of the earth radius with the canonical mean equatorial radius of 6378.145 kilometers. 
Together with other information collected by processing the data, as well as the 
information about each message offered by Twitter REST API, the resulting graph 
includes detailed information about each of the nodes and each of the edges in the 
network (Table 1). 
 

Table 1: Table1: Node and edge attributes in the processed network data 

NODES EDGES 

user Usernames or Twitter handles type Type of exchange (@-mention or retweet) 

id Unique ID of Twitter users aggieScore Aggie score calculated by aggie classifier 

location Geographic location sustainScore Sustainability score calculated by sustain classifier 

time Account creation date sustAggScore Aggregated aggie and sustain scores 

tweets Number of tweets posted by user text Tweeted message 

followers Number of users following the account favoriteCount Number of times the message was favorited 
(global) 



followees Number of accounts followed by user retweetCount Number of retweets globally (all Twitter users) 

description User's profile description retweetNum Number of retweets within the population 

lastTweet Last retrieved tweet isRetweet Whether the message is a retweet (Retweet 
Button) latitude Geographic location (coordinate) tweetID Unique ID of the message 

longitude Geographic location (coordinate) dateChar Timestamp when the message was posted (UTC) 

list UC ANR Twitter list timeChar Timestamp when the message was posted (UTC) 

california Geographic location (if in California) timeNum Timestamp when the message was posted (UTC) 

state Geographic location (US states only) distKm Geographic distance between sender and receiver 

state.abb Geographic location abbreviated) color Edge color (mentions in red and retweets in blue) 

membership Modularity community assigned to 
user 

isFollower Whether the sender follows the receiver 

 
7. Results 
 
We relied on the fastgreedy community algorithm implemented in igraph (Csardi and 
Nepusz, 2006) to classify the nodes into subcommunities or modules. The network was 
thus divided into 10 large modules that account for 80% of the graph (32,152 users), with 
the 11th module including the remaining, more sparsely connected nodes in the network. 
We subsequently mined the content tweeted by users in each module and found it to be 
consistent with topical subcommunities broadly associated with agriculture. The modules 
detected in the network consistently presented different averages for indegree and 
outdegree, both for retweets and @-mentions, with influential accounts displaying high 
indegree for @-mentions and high outdegree for retweets, thus confirming our assertion 
in RO2. Such accounts provide most of the content to the community and represent 
important stakeholders to whom the community directs their questions and expectations. 
As an example, the UC ANR account has a @-mention indegree of 2,446 and a retweet 
outdegree of 1,820 but the @-mention outdegree and the retweet indegree are 
considerably lower at 370 and 458, respectively. Figure 6 gives the breakdown of inbound 
and outbound connections across modularity communities compared to their average 
number of followers, followees, and tweets. Modules #1 and #6 present a higher average 
and a few extraordinarily active and connected nodes. 
 

 
Figure 6: Follower, followee, and tweet averages compared to degree, indegree, and outdegree per module 



The nonreciprocal and directed nature of retweet and @-mention interactions indicates 
the existence of an informational relationship between users, as the information flows only 
one way from one user to another, with reciprocal relationships—either as mutual @-
mentions or retweets—being particularly uncommon in the community. This is also 
consistent with the hypothesis that the network is structured around a core (Borgatti and 
Everett, 2000, Holme, 2005) and a periphery and sheds particular light on RO3, with 
retweets flowing from core members of the community towards the periphery, and @-
mentions flowing from the periphery towards the core. We subsequently tested the 
network for core-periphery structure and found significant correlations between coreness 
and degree for retweet indegree and outdegree (.69 and .40, respectively, p<.001) and 
@-mention indegree and outdegree (.52 and .77, respectively, p<.001). The test for the 
aggregated network of @-mentions and retweets also reported a significant correlation 
between coreness and degree with r=.65 (p<.001). Most remarkably, @-mentions mostly 
flow from California towards Washington, DC, likely a marker of messages politically 
laden and aimed at policy makers. Figure 7 shows the interactions between East and 
West coast, with the direction of retweets following clockwise from California towards 
Washington, DC and New York, and @-mentions flowing from East to the West coast. 
 

 
Figure 7: Directionality of @-mentions and retweets from West to East coast and back again 

Core-periphery patterns are yet stronger when subsetting the network for messages 
pertinent to agriculture and sustainability. The correlations between coreness and degree 
for retweets is significantly higher for indegree and outdegree (r=.77 and .64, respectively, 
p<.001). The same difference is observed with agriculture and sustainability relevant @-
mention messages, with yet higher correlations between coreness and @-mention 
indegree and outdegree (.56 and .80, respectively, p<.001). Although the estimates for 



product-moment correlation between coreness and degree remain significant for non-
agriculture-relevant messages, it is significantly lower compared to the subnetwork of 
agriculture-relevant messages (r=.77 and .57, respectively, p<.001). Comparatively, a 
random Erdös-Rényi graph with the same number of nodes and edges presents a much 
lower correlation between coreness and degree compared to our network (r=.30 and .65, 
respectively, p<.001), and unsurprisingly, a random small-world network with the same 
dimensions reports a correlation between coreness and degree of only .07 (p<.001).  
 
After establishing that the network was structured as a core-periphery (RO3) we further 
investigated the network properties of users in each of the modules. We found that 
communities #1 and #6 present much higher average number of inbound @-mention and 
outbound retweet, a marker of their position as informational centers of the network that 
include highly-active and highly-followed accounts (RO2). We subsequently fit an ERGM 
model (Goodreau, 2007, Robins et al., 2007) to a single day of message exchanges and 
confirmed that users located in California, as well as tweet activity and following size, 
were significant predictors or tie formation (p<.0001, p<.005, and p<.0001, respectively). 
We understand these results to indicate the presence of hubs in the network feeding 
information to the community, an asymmetry detailed in Figure 8. 
 

 
Figure 8: Average network metrics for users in each of the 10 modules 

The degree distribution of the Twitter network is characterized by a very long tail (Kwak 
et al., 2010) that makes indegree and outdegre averages impractical for network analysis. 
However, by subsetting degree averages per module, we found that the 10 
subcommunities present relatively comparable number of users and similar averages for 
the number of retweet and mentions. Moreover, the subcommunities display considerable 
skewed averages for @-mentions and retweets when indegree and outdegree are 
considered. Figure 8 provides detailed information about the 10 subcommunities with 
prevailing higher retweet indegree averages compared to retweet outdegree, particularly 
in communities #1, #6, and #10. The same difference is observed in the averages for @-



mentions, with considerable differences depicting subcommunities of users that are the 
object of messages and subcommunities of users that constantly direct their messages 
to other accounts. Most remarkably, and again consistent with the core-periphery 
structure of this network, we found that central subcommunities were both the object of 
@-mentions and the source of retweets, another marker of their centrality in the network. 
As shown in Figure 8, this is particularly the case of communities #1, #4, and #6, which 
include a large number of highly-tweeted and highly-mentioned accounts. 
 

 
Figure 9: Hashtag frequency over time in each of the 10 subcommunities 

Taken together the network comprises a long tail of the indegree and outdegree 
distributions, both for retweets and @-mentions. Accounts with large retweet outdegree 
refer to users whose tweets were retweeted many times by different users, often at a very 
high rate. This is the set of users spreading information that we refer to as broadcasters. 
The results of the aggieScore show that these users tend to either generate agriculture-
relavant content or introduce it to the network. Accounts with a high retweet indegree, on 



the other hand, refer to users that retweet a large number of messages. We refer to these 
users as receivers or the information, albeit from a user-centered perspective one can 
also assert that they are moving information throughout the network. 
 
Next we modelled the topics discussed across the network to understand the overarching 
issues considered by this community. We relied on hashtags as unifying textual markers 
and modelled the most common terms for each of the 10 modules or groups. Perhaps 
unsurprisingly, the communities showed clear thematic focus, particularly around issues 
such as water, food, agriculture, wine, climate change, pets, gardening, policy, and 
politics. We subsequently analyzed the hashtag frequency and the topics discussed by 
users in each of the subcommunities. Figure 9 shows the frequency of hashtags over time 
for each of the 10 modules and highlights the thematic consistency within each 
subcommunity. 
 
In order to provide a conclusive answer to RO3, we sampled the network in 10 graphs 
restricted to the users identified in each of the subcommunitues. As topical modules are 
necessarily a subset of the network, we generated Erdös-Rényi random graphs of equal 
dimensions (equal number of nodes and edges) and compared the correlation of 
coreness and degree between the modularity groups and the random graphs. By 
iteratively retrieving core-periphery estimates for the observed subcommunities and the 
random network, we tested the hypothesis that the subcommunities present cumulative 
core-periphery dynamics as the network becomes increasingly specialized. The 
estimators for randomly selected subnets consistently presented lower correlation 
between coreness and degree and a significantly more cohesive core was found in all 
subnetworks compared to the random networks. 
 

 
Figure 10: Core-periphery estimates for observed communities and Erdös-Rényi random graphs of equal size 

The only exception to these results is module #11, which again confirms the results as 
this module it is not a subcommunity but an aggregated of nodes detached from any 
organic subcommunity. We understand these results to indicate that the core-periphery 
topology of Twitter subnetworks dedicated to agriculture is associated with the type of 
content shared and discussed by users, with more specialized content structuring the 
network around cores and peripheries broadly consistent with the separations between 



topical experts and general public. Figure 10 shows the tests statistics for the observed 
subnetworks and the random graphs. 
 
8. Conclusion 
 
In this paper we reported on an investigation on the affordances of social media to the 
diffusion of agricultural information and described a replicable research design that can 
be applied to other studies focused on social media communities. We identified, mined, 
graphed, and retrieved the profile of 54,422 users and their following invested in 
spreading agricultural information and assigned users to cliques and topical 
subcommunities. We found that the network structure shows distinct patterns of core-
periphery shifts due to a dense, cohesive core and a sparse, unconnected periphery 
(Borgatti and Everett, 2000) extending beyond the geographic borders of the immediate 
clique of tightly knit users. We found that retweets cascade from a few accounts to a large 
crowd of peripheral, but highly active users, and that @-mentions originate from or are 
directed to a few users that perform the role of hubs and authorities in the network. As a 
result, we posit that outreach initiatives resort to social networks to broadcast information 
from relevant government agencies to a tightly interconnected community of users 
invested in specific subtopics of agriculture, a theoretical framework consistent with the 
two-step flow theory of communication originally proposed by Katz (1957). 
 
The intuitive understanding of the core-periphery structure stems from the layout of a 
network that cannot be subdivided into exclusive cohesive subgroups or factions, even 
though some nodes appear much better connected than others. According to Pattison 
(1993) and Borgatti and Everett (2000), core-periphery networks consist of just one group 
to which all actors belong to a greater or lesser extent. Therefore, the core community of 
agricultural influential users occupy the center of the graph and are proximate not only to 
each other but to all nodes in the network, while the remaining nodes are located in the 
outskirts and relatively close only to the center. In addition to the core-periphery patterns 
found in these graphs, the structural properties of the networks are neither completely 
regular nor completely random, as they display small average path lengths typical of 
random graphs. 
 
This pattern of information exchange suggests that a few accounts source information to 
the community which subsequently retweet this information to their subcommunities of 
interest. This snapshot of the network provides an alternative view of the dynamics of a 
green virtual sphere. Although it includes a considerable portion of contentious topics, 
particularly climate change and issues related to draught and water resources, it also 
includes a large set of messages and the ensuing user interaction focused on specialized 
agriculture information, particularly wine and plant sciences. This confluence of subtopics 
mirrors the diversity of stakeholders involved in the agriculture and food sectors, including 
outreach centers, farmers, and government agencies. However, the highly skewed 
distribution of @-mention and retweet indegree and outdegree, together with the 
concentration of such user accounts in metropolitan areas, indicates that the core of the 
network is centralized around government agencies and news outlets, as opposed to 
farmers and growers who can benefit from having easy and direct access to new sources 
of agriculture knowledge. Despite the efforts of outreach professionals, the Twitter 
subcommunities associated with agriculture seemingly replicate the top-down, continuum 



model in which information flows from government agencies and news organizations 
towards growers, with little reciprocal interaction between users in the periphery of the 
network. 
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