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Introduction and Literature Review

The occupational landscape in many countries has changed profoundly. New
occupations have emerged around technologies such as artificial intelligence (Al), big
data and social media (Kane, 2017; Newlands & Lutz, 2024b). Such technological shifts
have also had a tangible impact on job quality (Makridis & Han, 2021). Job quality is
multifaceted (Adamson & Roper, 2019), encompassing not only ‘hard’ aspects such as
working conditions and pay but also ‘soft’ criteria such as individuals’ subjective
interpretations of their work. Occupations carry societal values, with society forming
subjective views about their prestige and standing (Lambert & Bihagen, 2014).
Occupational evaluations are influenced by media, societal narratives, and assumptions
about an occupation’s characteristics, rewards, and exclusivity (Mejia et al., 2021).

Investigations of societal occupational evaluation predominantly involve surveys with
human participants, especially from Treiman's (1977) Standard International
Occupational Prestige Scale (SIOPS; see for example Lersch et al., 2020; Pitt & Zhu,
2019). The literature on occupational prestige typically encompasses measurements
related to prestige, social standing, social status, and social value. The intersection
between prestige and social value is particularly pertinent, given the growing body of
research on the perceived (low) social value of occupations, notably in relation to
Graeber’s (2018) discourse on ‘Bullshit Jobs.’
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Collectively, existing studies reveal a certain consensus how different occupations are
evaluated, even though such evaluations remain dynamic and subject to variation
(Avent-Holt et al., 2020; Valentino, 2020; Valentino, 2021). We follow this idea by
differentiating two distinct axes of occupational evaluation: occupational prestige (OP)
and occupational social value (OSV). The former captures whether an occupation is
seen as prestigious (i.e., whether it has high esteem), whereas the latter includes
perceptions of social utility (i.e., whether an occupation is seen as useful).

Our study links such evaluations of occupations with the rapid advancement of Al.
There is an ongoing debate about Al’s role in complementing or replacing human labour
(Frey & Osborne 2017; Gmyrek et al., 2023). The use of algorithms in workforce
management, often termed ‘algorithmic management’ (Jarrahi et al., 2021), exemplifies
this transformation, with diverging assessments of the very concept (Berg et al., 2018;
Jarrahi et al., 2022; Shestakofsky, 2017). Particularly, Large Language Models (LLMs),
such as GPT-4 and Llama, represent a pivotal advancement, due to their capacity of
content analysis and creation across unstructured textual, visual, and audio-visual
media.

Emerging literature shows that these new LLMs not only process data, but also form
discernible opinions on societal aspects. Since they are trained on historical data, LLMs
reflect and perpetuate societal biases (Saetra, 2023). We contribute to the rapidly
expanding body of literature examining LLMs and their social perceptions (Argyle et al.,
2023a, 2023b), basing our discussion on the concept of a ‘technological construction of
society’ (Authors, 2024). This idea responds to STS perspectives by Klein and Kleinman
(2002) and Pinch and Bijker (1984) regarding the social construction of technology.
Technological construction of society suggests inverted roles. It refers to the notion that
technology, especially digital technology, exerts substantial influence on the
configuration and perception of various aspects of modern society. Viewing technology
as a potential shaper of human perceptions and communication raises important
questions about the rules for its integration into different areas of human activity such as
the world of work. To respond to this challenge, we provide an in-depth analysis of the
OP and OSV perceptions of GPT-4, contrasting the LLM’s scores with those of human
respondents.

Methods, Results and Discussion

We rely on a list of 576 occupation titles, aligned with the International Standard
Classification of Occupations (ISCO-08; ILO, 2008), and four non-occupational roles
(Unemployed, Retiree, Student, Homemaker). We matched every occupation title to one
ISCO-08 unit group. The full occupation list also includes a core list, with exactly one
occupation title for each of the 130 ISCO-08 minor groups, selected to be highly known
and institutionalised (e.g., Taxi Driver, Butcher, Journalist, Dentist).

To measure OP and OSV comprehensively, we developed a scalable approach, where
occupational titles are scored on a 0-100 scale with a slider (Newlands & Lutz, 2024a,
2024b). We did not explain the concepts of OP and OSV, in order not to prime the



respondents. For the recruitment of survey participants, we relied on Prolific. We
collected OP and OSV assessments in March 2022, using Prolific’s representative
sample option for the UK, where the platform selects the respondents across age, sex,
and ethnicity to mirror the population distribution. The study reward was £2.50, with a
median response time of 19 minutes (SD = 15 minutes). OP and OSV were assessed in
separate surveys as we did not want the same respondents to score occupations on
these two dimensions concurrently to avoid priming effects and to maintain statistical
independence. Consequently, the surveys were launched sequentially with screening
out for previous participation in any data collection. Our final sample size is 2429
respondents (1219 for OP and 1210 for OSV). 48.7% of the respondents identify as
male, 50.6% as female, and the remaining 0.7% as non-binary. The average age is 44
years (SD = 16 years). Ethnicity and education match the UK Office of National
Statistics distribution.

GPT scores were generated using a Python script that accesses GPT-4 through the
OpenAl library. The script is organised as a loop of sequential API calls that process
each of the 580 occupations individually, with an exponential backoff and retry option
set to handle any API response errors. We request a written justification of each score
in the first round of predictions (see Appendix).

We proceeded in four steps for the empirical analyses.

1) We compared GPT-4 raw scores with survey scores. Despite similarities, a
simple visual breakdown across the main demographic characteristics
confirms that GPT-4 overestimates scores across the board, when compared
to human scores (Figure 1 for OSV, same for OP).
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Figure 1: GPT-4 OSV scores vs. respondent scores

2) The scores were z-standardized and GPT-4 and human scores were
subsequently correlated. This showed high consistency between humans and
GPT-4 (correlations mostly between 0.7 and 0.9).



3) We focused on outlier occupations, where the absolute difference in z-scores
between humans and GPT-4 exceeds 0.5 (see Figure 2 for OSV, similar
patterns for OP).

4) We analysed which demographic groups are best/worst captured by GPT-4
scores by splitting the human survey across age (18-24/25-54/55+), gender
(male/female) and ethnic majority/minority status (White/Non-White). GPT-4
is most aligned with white men and women above 25 years and least aligned
with non-white men of all age groups, and non-white women 55+.
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Figure 2: Occupations with largest OSV difference between GPT-4 and humans



Overall, our research shows that GPT-4 accurately reflects the OP and OSV
perceptions of UK residents. However, the model overestimates OP and OSV scores
compared to human respondents, an issue that can be corrected through data
transformations but remains a limitation. It also struggles with capturing nuanced
opinions for specific occupations, particularly those related to the digital economy and
the shadow sector, aligning with research on LLM biases (Cheng et al., 2023). GPT-4’s
evaluations poorly represent minority groups. These disparities may be influenced by
historical biases and systemic inequalities where LLMs primarily reflect WEIRD
perspectives (Atari et al., 2023). While GPT-4 is a useful tool for probing social
perceptions, it cannot fully replace nuanced human surveys.

A more detailed description of the methods, results and implications is available in a
peer-reviewed article that has in the meantime been published (Gmyrek et al., 2024).
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Appendix

The GPT-4 prompt used was as follows:

{"role": "system", "content": "You are a respondent to a survey in the UK."
"Make your response representative of an UK average resident, taking into
account the social and demographic diversity of the UK." },
{"role": "user", "content": "Look at this occupation title: " +
str (Occupation Title) +
"Rate the prestige of this occupation on a scale of 0 (the lowest level of
prestige) to 100 (the highest level of prestige), with intervals of 1. "
"Make your response representative of an UK average resident, taking into
account the social and demographic diversity of the UK. "
"In the first line of response provide only your numerical score,
no other text."
"In the following lines provide a justification of your scoring
decision. "
"Do not give any score ranges Jjust one score."}

Once all occupations have been processed, the procedure repeats 49 times, resulting in
a total of 50 estimation cycles. Since we do not generate justifications for these
remaining 49 cycles, the “user” part of the script is amended:

{"role": "user", "content": [..] "In the first line of response provide only
your numerical score,
no other text. Do not give any score ranges Jjust one score."}



